152 research outputs found

    Collaboration and Health Care Diagnostics: an Agent Based Model Simulation

    Get PDF
    This paper presents a simple ABM simulation that seeks to provide insight into the public health benefits that derive from greater collaboration among health care professionals. In particular, the paper compares the efficiency, delivery and timeliness of health care diagnostics under two contrasting paradigms–one in which collaboration is encouraged, and an- other where it is not. The preliminary results of this study suggest that while the effect of cooperation on aggregate public health depends on the patient search algorithm employed, its effect on overall efficiency and timeliness of health care diagnostics and treatment is significant and pos- itive. Since the speed with which an adequate diagnosis is provided has implications both for the overall cost of health care, as well as for the pos- sible gains from treatment and intervention (or even for the containing of contagious disease) the results appear relevant for anyone concerned with the planning and provision of health and health care

    Single-molecule localization microscopy analysis with ImageJ

    Get PDF
    ImageJ is a versatile and powerful tool for quantitative image analysis in microscopy. It is open-source software, platform-independent and enables students and researchers to obtain an easy but thorough introduction into image analysis. Especially the image processing package Fiji is a valuable and powerful extension of ImageJ. Several plugins and macros for single-molecule localization microscopy (SMLM) have been developed during the last decade. These novel tools cover the steps from single-molecule localization and image reconstruction to SMLM data postprocessing such as density analysis, image registration or resolution estimation. This article describes how ImageJ/Fiji can be used for image analysis, reviews existing extensions for SMLM, and aims at introducing and motivating novices and advanced SMLM users alike to explore the possibilities of ImageJ/Fiji for automated and quantitative data analysis

    Parameter-free Molecular Super-Structures Quantification in Single-Molecule Localisation Microscopy

    Get PDF
    Understanding biological function requires the identification and characterization of complex patterns of molecules. Single-molecule localization microscopy (SMLM) can quantitatively measure molecular components and interactions at resolutions far beyond the diffraction limit, but this information is only useful if these patterns can be quantified and interpreted. We provide a new approach for the analysis of SMLM data that develops the concept of structures and super-structures formed by interconnected elements, such as smaller protein clusters. Using a formal framework and a parameter-free algorithm, (super-)structures formed from smaller components are found to be abundant in classes of nuclear proteins, such as heterogeneous nuclear ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the plasma membrane. We suggest that mesoscopic structures formed by interconnected protein clusters are common within the nucleus and have an important role in the organization and function of the genome. Our algorithm, SuperStructure, can be used to analyze and explore complex SMLM data and extract functionally relevant information

    Light-induced cell damage in live-cell super-resolution microscopy

    Get PDF
    Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm(-2) at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm(-2), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities

    Reply to 'Impact of optical aberrations on axial position determination by photometry'

    Get PDF
    Franke and van de Linde reply to 'Impact of optical aberrations on axial position determination by photometry'

    From single-molecule spectroscopy to super-resolution imaging of the neuron: a review.

    Get PDF
    For more than 20 years, single-molecule spectroscopy has been providing invaluable insights into nature at the molecular level. The field has received a powerful boost with the development of the technique into super-resolution imaging methods, ca. 10 years ago, which overcome the limitations imposed by optical diffraction. Today, single molecule super-resolution imaging is routinely used in the study of macromolecular function and structure in the cell. Concomitantly, computational methods have been developed that provide information on numbers and positions of molecules at the nanometer-scale. In this overview, we outline the technical developments that have led to the emergence of localization microscopy techniques from single-molecule spectroscopy. We then provide a comprehensive review on the application of the technique in the field of neuroscience research.This work was supported by grants from the UK Engineering and Physical Sciences Research Council (EPSRC), The Wellcome Trust, Alzheimer’s Research UK, the Medical Research Council (MRC), and the Biotechnology and Biological Sciences Resesarch Council (BBSRC)

    The formation of physician patient sharing networks in medicare: Exploring the effect of hospital affiliation

    Get PDF
    This study explores the forces that drive the formation of physician patient sharing networks. In particular, I examine the degree to which hospital affiliation drives physicians\u27 sharing of Medicare patients. Using a revealed preference framework where observed network links are taken to be pairwise stable, I estimate the physicians\u27 pair‐specific values using a tetrad maximum score estimator that is robust to the presence of unobserved physician specific characteristics. I also control for a number of potentially confounding patient sharing channels, such as (a) common physician group or hospital system affiliation, (b) physician homophily, (c) knowledge complementarity, (d) patient side considerations related to both geographic proximity and insurance network participation, and (e) spillover from other collaborations. Focusing on the Chicago hospital referral region, I find that shared hospital affiliation accounts for 36.5% of the average pair‐specific utility from a link. Implications for reducing care fragmentation are discussed

    Single-molecule photoswitching and localization

    Get PDF
    Within only a few years super-resolution fluorescence imaging based on single-molecule localization and image reconstruction has attracted considerable interest because it offers a comparatively simple way to achieve a substantially improved optical resolution down to ∼20nm in the image plane. Since super-resolution imaging methods such as photoactivated localization microscopy, fluorescence photoactivation localization microscopy, stochastic optical reconstruction microscopy, and direct stochastic optical reconstruction microscopy rely critically on exact fitting of the centre of mass and the shape of the point-spread-function of isolated emitters unaffected by neighbouring fluorophores, controlled photoswitching or photoactivation of fluorophores is the key parameter for resolution improvement. This review will explain the principles and requirements of single-molecule based localization microscopy, and compare different super-resolution imaging concepts and highlight their strengths and limitations with respect to applications in fixed and living cells with high spatio-temporal resolution

    Structural analysis of herpes simplex virus by optical super-resolution imaging.

    Get PDF
    Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument.This work was supported by grants from the Leverhulme Trust (grant RPG-2012-793), the Royal Society (University Research Fellowship to C.M.C.), the Engineering and Physical Sciences Research Council, UK (grant EP/H018301/1) and by the Medical Research Council (grant MR/K015850/1).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150122/ncomms6980/full/ncomms6980.html
    corecore